lock resolution
英 [lɒk ˌrezəˈluːʃn]
美 [lɑːk ˌrezəˈluːʃn]
网络 锁归结
双语例句
- Based on RUE-NRF inference rule, the concepts of RUE-NRF input refutation, RUE-NRF unit refutation and RUE-NRF lock refutation are defined. The relation between RUE-NRF input refutation and RUE-NRF unit refutation and the completeness of RUE-NRF lock resolution are proved also.
本文在RUE-NRF推理规则的基础上,定义了RUE-NRF输入归结、RUE-NRF单元归结及RUE-NRF锁归结的概念,证明了RUE-NRF输入反驳与RUE-NRF单元反驳的关系,以及RUE-NRF锁反驳的完备性。 - In Boolean operator fuzzy logic, the generalized lock resolution is generalized complete if the same predicate symbols Rave the same index.
在布尔算子模糊逻辑中,当相同谓词符号配相同锁时,广义锁归结方法是广义完备的。 - Finally, when resource dead-locks occur ( where one service holds a lock that another requires, and vice versa), the service will need to implement some form of dead-lock resolution.
最后,当资源出现死锁(一个服务持有另一个服务需要的锁,反之亦然)时,服务将需要实现某种形式的死锁消除。 - Semantic resolution, lock resolution and linear resolution are three important improvements of resolution principle.
语义归结、锁归结、线性归结是三种重要的关于归结原理的改进。 - This paper proves that lock semantic resolution principle are complete in special fuzzy logic.
在狭义模糊逻辑中的锁语义归结原理可以有比在广义模糊逻辑中更强的限制。本文讨论了这种更强限制下的锁语义归结原理,证明了它在狭义模糊逻辑中是完备的。 - Lock-Semantic Resolution Using Reduction
使用约化的锁语义归结原理 - Lock of Generalized RUE-NRF Resolution
广义RUE-NRF归结的配锁 - The λ-Unit Lock Resolution on λ-Horn Set
λ-Horn集上的λ-单元锁归结 - In this paper we obtain the following results: semantic resolution and lock resolution are compatible under certain condition;
本文给出如下结果:语义归结和锁归结在某种条件下是相容的; - Lock semantic resolution priciple in special fuzzy logic
狭义模糊逻辑中的锁语义归结原理